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A ribbon knot can be represented as the propagation of  an o p e n  string in 
(Euclidean) space-time. By imposing physical conditions plus an ansatz on the 
string scattering amplitude, we get invariant polynomials of  ribbon knots which 
correspond to Jones and Wadati et al. polynomials for ordinary knots. Motivated 
by the string scattering vertices, we derive an algebra which is a generalization 
of  Hecke and Murakami-Birman-Wenzel (BMW) algebras of knots. 

String theory (Green et al. 1987) is a promising candidate for both 
quantum gravity and unified field theory. Its main promise is in the rich 
mathematical structure it has. It is related to the theory of Riemann surfaces, 
algebraic and differential topology, and conformal field theory. Recently it 
has been related to topological quantum field theory in three dimensions 
(Witten, 1989). In this paper it will be related to the theory of  ribbon knots 
(Kauffman, 1987a). 

Recalling that the world line of a point particle is a braid whose closure 
is a knot, the world line of  an open string is a ribbon braid whose closure 
is a ribbon knot. For ribbon knots one has the extra freedom of twist. We 
will not attempt to prove an analogue to Alexander's theorem (Kauffman, 
1987a), i.e., every ribbon knot corresponds to a ribbon braid. We study 
only the class of ribbon knots which can be constructed via the closure of 
ribbon braids (up to twist). 

It is important to realize that the correspondence between ribbon knots 
and one-dimensional knots is not one-to-one. As an example, it is easy to 
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see that both a closed ribbon and a M6bius strip correspond to the one- 
dimensional unknot, although they are topologically different. Therefore 
the problem of constructing ribbon-knot-invariant polynomials is important. 

Recently Kauffman introduced a Feynman-type approach to construct- 
ing one-dimensional knot invariants (Kauffman, 1987b). His work has been 
extended (Ge et al., 1989) to the N = 3  and 4 cases of Wadati et al. 
polynomials (Wadati et al., 1989). Here we use this technique to build 
invariant polynomials for ribbon knots. 

The basic idea is to consider the crossings of ribbon knots as scattering 
of open strings. Imposing physically plausible constraints, e.g., charge 
conservation and PCT invariance, and assuming an ansatz for the scatter- 
ing amplitude, one gets the required invariants. We assign charges to each 
string which change only at the crossings (vertices). They take the values 
{ ( - N +  1)/2, ( - N + 3 ) , . . . ,  ( N -  1)/2} for some integer N. 

The scattering matrix S;~ denotes the 4-point scattering 

c d Ca~. I 
S~b = (S- ' )  ~ a = (1) 

Unitarity and factorizability conditions are 

S c d t ' c - l ' e f  "~" r (2) 
ab k *'~ } cd 

s a ' b ' c c ' f  ~ d e  __ r 1 6 2  ~b ob'coa'~'-- oab'Obc oa'~' (3) 

where one  sums over repeated indices. Equation (3) is the Yang-Baxter 
equation. For N = 2 we follow Kauffman by imposing the ansatz 

t - t  1 a=c<b=d 
ca t, a = c =  b = d (4) 

S~b= 1, a = d # b = c  
0, otherwise 

This ansatz satisfies the following physical constraints: 

(i) Charge conservation 

(ii) PC invariance 

(iii) T invariance 

unless a + b = c + d  (5) 

- . - c  = S-h_. (6) 

cd ab Sob = S~.a (7) 
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Conditions (6) and (7) imply P C T  invariance 

cd - b - a  Sab = S-~-c  (8) 

Apart from the previous constraints, there is no general way to derive the 
ansatz (4) yet. 

Now we obtain the analogue of  the Kauffman bracket polynomial for 
ribbon knots in the form 

[K]  = Y~ ( S I K ) t  -tsl  (9) 
S 

where S is a choice of decomposition for all the vertices in the ribbon knot 
K. Here (SlK) is the multiplication of all the factors corresponding to such 
a decomposition. Since S ends up in a set of  closed ribbons, Isl is defined 
by 

IS[ = Y el x (change of  the ribbon l) (10) 
/ - c losed  r i b b o n s  

where e~ = + 1 ( - 1 )  according to whether the charge orientation follows the 
right (left)-hand rule with respect to the closed ribbon axis. 

Notice that the bracket polynomial (9) is regular isotopy invariant and 
not ambient isotopy invariant. Regular isotopy, however, seems more natural 
from the point of view of topological quantum field theory (Witten, 1989). 

The N =3 case is obtained using the following ansatz, which is 
analogous to the corresponding case for the one-dimensional knot (Ge et  

al. ,  1989) 

Sl l l l  - 1 - 1  = O0 =S-1-1 t 2, Soo=l  

sOl -lO t : - t  -2 =S_1o = (11) 

SZ1111 = t 2 -  1 -- t - 2  + t -4  

- -10 O1 10 So-i = Slo = Sol = S~ = -1  

--11 S,_, = S[~'I = T -2 (12) 

S d '  S ~ 1 7 6  t -3 

Substituting in (9), one gets the N = 3 regular isotopy-invariant polynomial 
for ribbon knots. 

It is important to notice that the polynomials constructed here do not 
distinguish the twist number; therefore, they are not the most general 
invariant polynomials for ribbon knots. 

The world line of a closed string is a vein braid whose closure forms 
a vein knot, which will not be considered here. 
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We will discuss the effect of strings on the algebra of knots. So far, all 
the studies of knots use the 4-valent vertices, which correspond to the 4-point 
scattering amplitude. This is unsatisfactory from the point of view of strings, 
since it is known that strings have both 3-point and 4-point scatterings. 
Furthermore, one can form the 4-point scattering out of two 3-point ones, 
as is known in the Fermi theory of weak interactions. 

Motivated by the previous argument, we propose the following algebra 
generated by {bi, el}, where i = 1, 2 , . . . ,  n - 1, where 

i i+1  

i/ \ i+1  = 

bi -- x ~  ei (13) 

i i+1  

i i+1  

The multiplication is defined, as usual, by concatenation, erasing the middle 
line and rescaling. A factor a is multiplied for each closed loop and a factor 
/3 is multiplied for each twist. Then it is straightforward to derive the 
following defining relations for the algebra: 

b,bj = bjbi if [i - j ]  -> 2 

blbi+l bi = b .  bibi+ 1 (14) 
2 

e i = o l e  i 

eibi --- biei "--- ~3el 

This algebra contains both the Hecke algebra (Jones, 1987) and the 
Murakami-Birman-Wenzel algebra (Murakami, 1987; Birman and Wenzel, 
1989), which correspond to Jones polynomials and N = 3 Wadati et al. 
polynomials for knots, respectively. 

An interesting way of looking at the corresponding to knots is to look 
at the decomposition of the scattering amplitude. For N = 2 the decomposi- 
tion of the scattering amplitude (4) corresponds to the Hecke algebra. For 
N = 3  the decomposition (11) corresponds to the Murakami-Birman- 
Wenzel algebra. For N = 4 the algebra is not known yet despite the discovery 
of the decomposition of the scattering amplitude (Ge et al., 1989). The 
decomposition is rather complicated, so we will not write it here. From the 
graphical point of view it is similar to that of the N = 3 case plus terms 
which can be represented by the operator ei of the algebra (14). Therefore 
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we expect that the algebra (14) will be related to the as yet unknown N = 4 
algebra. This problem is currently under investigation. 

Invariant polynomials of  ribbon knots corresponding to N - - 2  and 
N = 3 polynomials for ordinary (one-dimensional knots) have been con- 
structed. They are not the most general invariants of ribbon knots, since 
they do not distinguish the twist character. Motivated by the string 3-point 
interaction, the algebra (14) is proposed. It is a generalization of both the 
N = 2 (Hecke) and N = 3 (BMW) algebras. We anticipate that this algebra 
will help in solving the outstanding problem of N = 4 algebra. 
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